经验总结:P2P平台数据经营系统
本文摘要:文章从数据运营的角度,从方法论去分解P2P平台的数据运营,从而构建一个完好的数据运营体系。从2014年从事P2P行业到现在,已有3年多时间了。习惯在年底年初对自己一年来的学习、工作、日子等方面做一些总结,曾经的总结都比较零星,现在想逐步的从框架到细节

文章从数据运营的角度,从方法论去分解P2P平台的数据运营,从而构建一个完好的数据运营体系。

从2014年从事P2P行业到现在,已有3年多时间了。习惯在年底年初对自己一年来的学习、工作、日子等方面做一些总结,曾经的总结都比较零星,现在想逐步的从框架到细节逐步去做一些总结。

我在P2P行业一共待过3个平台,所负责的工作内容从推广到运营,从运营到产品,从产品再回到运营。在P2P平台的运营过程当中,发现关于运营数据的发掘分析,其实可以做到很详尽。现在我就用数据运营的角度,从方法论去分解P2P平台的数据运营,从而构建一个完好的数据运营体系。

为何要做数据运营

做数据运营,是为了准确的分析具备某些特征的用户,乃至于某个用户在平台上的所有操作行为,研讨分析其操作行为并做出行为预判,调整针对性的运营策略,从而做到精密化运营的意图。

数据运营的分解步骤

如下图,我将数据运营的步骤进行了如下分解,然后依照这8个分解步骤进行逐一说明。

P2P的事务流程,这个不了解的就妄为P2P从业人员了。

基础运营流程,即用户的操作流程,各家平台迥然不同,主要的差异化是每一个平台在关于用户操作的功用设计不同,或者数据获取的来历不同。在这里我们把简要的用户操作流程进行分解。

原则上来说,我们做运营就需要用户在平台上所有的操作记载。通俗的来说,就是什么人什么时间在什么当地做了什么事,而这个事又是什么?因此我们首要第一步是依照分解步骤去获取用户的操作记载,这是最原始最基础的数据需求。

除基础数据需求外,整个运营流程中对应的部门和岗位究竟发生了那些工作需求?这就是我们需要考虑的,那么在一般的平台架构上,运营部门可以大致分为如下7个部门,并在其间触及到的基础框架需求列出来。

而关于前面的流程需求里,提到的一些数据需求,在这里再做一些数据简述,请看下表:

关于流程需求,就不再一个个去罗列了。上面只是做了一些基础框架需求的罗列,在框架下可以细化出来的数据模型太多。

对用户在运营体系里不同的状态进行分级界说,主要可以依照上面提到的用户状态进行分级。

观察/注册/开户/充值/投资/复投/回款/续投/撤资/找回

当我们将用户进行分级后,从分级状态里提取状态进行图表化统计,可以得到一个用户生命周期的模型。我提取了一个数据样例,做了一个数据图,如下图:

从上图示例数据看到,我将用户的生命周期暂定为90天,这也是我现在对P2P平台的新用户的界说(注册时间90天内属于新用户),以此来进行用户生命周期的分析。图表所示,我将Y/X轴分为了资金轴和时间轴,自用户注册时起,便有了这样的数据,将数据导入软件后得到如图。

从示例图的数据我得到如下结论:

用户从注册时间起,到第一次充值时间截止。用户大约决策了10天。 用户从第一次充值时间起,到第一次投资时间截止,用户大约决策了5天。 用户自第一次回款开始,参照时间顺序,分别进行了提现操作和续投操作。标明用户关于平台提现时效进行了体验操作,再进行了续投操作。 用户的充值、投资决策时间(时间轴)间隔越短,对应的资金越高,则代表用户关于正在逐步进入沉淀期。

相应用户的决策行为受外部诸多因素影响,比如:品牌工作、营销活动、客服回访开发等。

提取用户分级后的数据,分析后对运营策略进行调整。

在这里罗列两个常见的数据运用进行说明:

1.在泛流量推广渠道上,怎么判断分析在一定平等的条件下,哪些新用户相对更加具备开发价值。

用户决策难度越高,则开发价值越大。举例来说,注册的操作步骤较为简略,而实名开通银行存管账户的操作就要难很多,并且要填写自己的身份证号码、银行卡信息这些高度隐私的信息,关于用户来说就有很大的决策难度,再往后就是首充及首投。 注册到开户的决策时间,注册或开户到首充首投的决策时间。在没有高精准的反欺诈(用户的马甲小号)功用前,这两类决策时间越短的用户,很大约率是遭到营销活动引导、渠道定向CPS活动引导而进行决策操作的。那么相对而言,这两类决策时间越长,则越标明用户一定的真实性、对平台有一定的观察期,慎重考虑往后才进行决策操作的。 在CPS推广的渠道上,以一定的奖励回报引导而来的用户,大部分转化用户的首投金额是源于CPS推广渠道的活动门槛的。若该渠道来历用户的首投金额>渠道活动门槛,则标明这些用户相对更加具备开发价值。除此之外,首投金额及期限越高,则越具备开发价值。 用户在进入沉淀期之前,有一定的试投体验期。这个期间的决策时间跨度间,未回款复投的用户,要比回款续投的用户更加具备开发价值。除此之外,复投及续投金额及期限越高,则越具备开发价值。 用户零待收,且通过公式推算用户的存管账户余额可能也为零的条件下,仍旧发生登录、拜访行为的用户相对更加具备开发价值。且拜访频次及阅读时间越高则用户相对更具备开发价值。

那么在从多方面获取到的数据信息里,逐步分析相对更加具备开发价值的用户。从而调整客服部门,推广部门的工作针对群体及策略。

2.非活动期间及活动期间,在扫除没有其他外部因素影响的条件下,不同投资能力的用户,回款资金抵达什么样的预期值才会让用户进行提现或续投的决策操作。

如图数据样例所示,用户接连15天回款,每天回款金额均匀抵达≥759.9元就会进行回款续投操作,最低一次回款续投操作在累计回款达518.17元时执行。因此我们由数据可开始揣度该用户的回款续投决策,决策预期值需要回款资金≥518.17元才会执行操作。

用户回款中有一笔973.76元的回款资金,同天进行了充值50元的操作,才进行的投资操作。这是一个很奇怪的行为,这个行为就像我们很多人有一个凑整心思。关于凑整心思在一些电商的营销手法里常见,若有对行为心思学有研讨朋友欢迎给一些关于“凑整”心思的资料。

接下来我们依据数据做出如下假设性的问题,供我们参考。

首要看下图:

在这里假定用户投资能力层级分别定为5个等级(详细如上),那么前面举例的用户在投资能力为小的级别上。依照数据模型分析悉数用户,我们可能会发现不同级其他用户在进行续投决策时,他们的决策预期值就可以够大约推算出来,这个推算出来的数据,是否是就可以够更准确的用于客服部门对客户进行跟踪回访呢? 同理关于用户在提现行为决策时,关于不同层级的用户来说,回款资金抵达什么样的决策预期值,用户会执行提现操作呢? 每一个用户在平台的投资总额(俗称仓)是否可以通过数据模型,分析用于对平台综合能力的考量,用户对在平台建仓的心思预期在什么样的规模值之内?

以上问题就交给数据量较大,且具有一定技能能力解决数据获取的平台运营朋友去论证吧。

每个运营环节(即用户分级引导的环节)从内容、交互、视觉方面进行引导,观察引导作用。

这个方面的数据,大致为页面拜访数据(拜访数量、重复拜访、拜访深度)、信息抵达数据、转化数据(激活、唤醒、转化)等。根本上适用于:客服部门、推广部门、运营部门。详细适用于:活动策划岗、案牍岗、产品岗、设计岗。

从每次调整的运营策略里,发掘多维的深度数据,权衡数据精确度。

可能这里的数据需求更多的是在于活动策划岗位及客服岗位吧,比如说活动参加度、用户活跃度、信息抵达率、激活转化率、决策行为添加等。

每次运营数据的变量,着重分析数据变量触及的多维度影响值。

这部分内容主要为:用户撤资行为、用户操作异常行为、用户活跃度异常、用户决策习惯异常等。主要作用于风险预警和行为预判,主要数据适用于客服部门、品牌部门、运营部门。详细适用于:客服岗位、负面信息监测岗位、活动策划岗位或交易管理岗位。

好了,本次分享就先到这里吧,确实大寒天思维不活跃,码字也好困难。本次分享的内容里有一部分内容没有详细说明的,在后边我会逐步分享。或者等我把我现在数据建模的很多东西更加论证之后再拿出来分享,现在正在整理一套数据模型,可能大约有100个左右。

 

作者:丁说网事,微信号大众号:DingShuoWangShi。具有8年互联网推广营销、互联网运营经历,2年电商运营经历。

本文由 @丁说网事 原创发布于人人都是产品主管。未经答应,禁止转载。

题图来自PEXELS,基于CC0协议


人人都是产品主管(woshipm)是以产品主管、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位效劳产品人和运营人,建立9年举行在线讲座500+期,线下分享会300+场,产品主管大会、运营大会20+场,掩盖北上广深杭成都等15个城市,内行业有较高的影响力和知名度。平台集合了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一同生长。

相关内容